
There was a corner case where Etag returned would be incorrect. This happens when the object is changed from file interface but with object size remaining the same. This change introduces an additional metadata that stores the mtime of object during PUT. This stored mtime is compared with actual mtime during GET to determine if the file has changed or not. Etag is recalculated if the file has changed. The scope of this fix in addressing the above mentioned corner case is limited to new objects only. Also, refactoring the code further by moving some methods from utils.py to classes in diskfile.py should prevent some redundant (f)stat syscalls. These minor optimizations will be addressed in a separate change. Change-Id: If724697ef2b17a3c569b60bd81ebf98dab283da6 Signed-off-by: Prashanth Pai <ppai@redhat.com>
402 lines
14 KiB
Python
402 lines
14 KiB
Python
# Copyright (c) 2012-2013 Red Hat, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
|
# implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import stat
|
|
import errno
|
|
import random
|
|
import logging
|
|
from hashlib import md5
|
|
from eventlet import sleep
|
|
import cPickle as pickle
|
|
from swiftonfile.swift.common.exceptions import SwiftOnFileSystemIOError
|
|
from swift.common.exceptions import DiskFileNoSpace
|
|
from swiftonfile.swift.common.fs_utils import do_stat, \
|
|
do_walk, do_rmdir, do_log_rl, get_filename_from_fd, do_open, \
|
|
do_getxattr, do_setxattr, do_removexattr, do_read, \
|
|
do_close, do_dup, do_lseek, do_fstat, do_fsync, do_rename
|
|
|
|
X_CONTENT_TYPE = 'Content-Type'
|
|
X_CONTENT_LENGTH = 'Content-Length'
|
|
X_TIMESTAMP = 'X-Timestamp'
|
|
X_TYPE = 'X-Type'
|
|
X_ETAG = 'ETag'
|
|
X_OBJECT_TYPE = 'X-Object-Type'
|
|
X_MTIME = 'X-Object-PUT-Mtime'
|
|
DIR_TYPE = 'application/directory'
|
|
METADATA_KEY = 'user.swift.metadata'
|
|
MAX_XATTR_SIZE = 65536
|
|
DIR_NON_OBJECT = 'dir'
|
|
DIR_OBJECT = 'marker_dir'
|
|
FILE = 'file'
|
|
FILE_TYPE = 'application/octet-stream'
|
|
OBJECT = 'Object'
|
|
DEFAULT_UID = -1
|
|
DEFAULT_GID = -1
|
|
PICKLE_PROTOCOL = 2
|
|
CHUNK_SIZE = 65536
|
|
|
|
|
|
def normalize_timestamp(timestamp):
|
|
"""
|
|
Format a timestamp (string or numeric) into a standardized
|
|
xxxxxxxxxx.xxxxx (10.5) format.
|
|
|
|
Note that timestamps using values greater than or equal to November 20th,
|
|
2286 at 17:46 UTC will use 11 digits to represent the number of
|
|
seconds.
|
|
|
|
:param timestamp: unix timestamp
|
|
:returns: normalized timestamp as a string
|
|
"""
|
|
return "%016.05f" % (float(timestamp))
|
|
|
|
|
|
def read_metadata(path_or_fd):
|
|
"""
|
|
Helper function to read the pickled metadata from a File/Directory.
|
|
|
|
:param path_or_fd: File/Directory path or fd from which to read metadata.
|
|
|
|
:returns: dictionary of metadata
|
|
"""
|
|
metadata = None
|
|
metadata_s = ''
|
|
key = 0
|
|
while metadata is None:
|
|
try:
|
|
metadata_s += do_getxattr(path_or_fd,
|
|
'%s%s' % (METADATA_KEY, (key or '')))
|
|
except IOError as err:
|
|
if err.errno == errno.ENODATA:
|
|
if key > 0:
|
|
# No errors reading the xattr keys, but since we have not
|
|
# been able to find enough chunks to get a successful
|
|
# unpickle operation, we consider the metadata lost, and
|
|
# drop the existing data so that the internal state can be
|
|
# recreated.
|
|
clean_metadata(path_or_fd)
|
|
# We either could not find any metadata key, or we could find
|
|
# some keys, but were not successful in performing the
|
|
# unpickling (missing keys perhaps)? Either way, just report
|
|
# to the caller we have no metadata.
|
|
metadata = {}
|
|
else:
|
|
# Note that we don't touch the keys on errors fetching the
|
|
# data since it could be a transient state.
|
|
raise SwiftOnFileSystemIOError(
|
|
err.errno, '%s, getxattr("%s", %s)' % (err.strerror,
|
|
path_or_fd, key))
|
|
else:
|
|
try:
|
|
# If this key provides all or the remaining part of the pickle
|
|
# data, we don't need to keep searching for more keys. This
|
|
# means if we only need to store data in N xattr key/value
|
|
# pair, we only need to invoke xattr get N times. With large
|
|
# keys sizes we are shooting for N = 1.
|
|
metadata = pickle.loads(metadata_s)
|
|
assert isinstance(metadata, dict)
|
|
except (EOFError, pickle.UnpicklingError):
|
|
# We still are not able recognize this existing data collected
|
|
# as a pickled object. Make sure we loop around to try to get
|
|
# more from another xattr key.
|
|
metadata = None
|
|
key += 1
|
|
return metadata
|
|
|
|
|
|
def write_metadata(path_or_fd, metadata):
|
|
"""
|
|
Helper function to write pickled metadata for a File/Directory.
|
|
|
|
:param path_or_fd: File/Directory path or fd to write the metadata
|
|
:param metadata: dictionary of metadata write
|
|
"""
|
|
assert isinstance(metadata, dict)
|
|
metastr = pickle.dumps(metadata, PICKLE_PROTOCOL)
|
|
key = 0
|
|
while metastr:
|
|
try:
|
|
do_setxattr(path_or_fd,
|
|
'%s%s' % (METADATA_KEY, key or ''),
|
|
metastr[:MAX_XATTR_SIZE])
|
|
except IOError as err:
|
|
if err.errno in (errno.ENOSPC, errno.EDQUOT):
|
|
if isinstance(path_or_fd, int):
|
|
filename = get_filename_from_fd(path_or_fd)
|
|
do_log_rl("write_metadata(%d, metadata) failed: %s : %s",
|
|
path_or_fd, err, filename)
|
|
else:
|
|
do_log_rl("write_metadata(%s, metadata) failed: %s",
|
|
path_or_fd, err)
|
|
raise DiskFileNoSpace()
|
|
else:
|
|
raise SwiftOnFileSystemIOError(
|
|
err.errno,
|
|
'%s, setxattr("%s", %s, metastr)' % (err.strerror,
|
|
path_or_fd, key))
|
|
metastr = metastr[MAX_XATTR_SIZE:]
|
|
key += 1
|
|
|
|
|
|
def clean_metadata(path_or_fd):
|
|
key = 0
|
|
while True:
|
|
try:
|
|
do_removexattr(path_or_fd, '%s%s' % (METADATA_KEY, (key or '')))
|
|
except IOError as err:
|
|
if err.errno == errno.ENODATA:
|
|
break
|
|
raise SwiftOnFileSystemIOError(
|
|
err.errno, '%s, removexattr("%s", %s)' % (err.strerror,
|
|
path_or_fd, key))
|
|
key += 1
|
|
|
|
|
|
def validate_object(metadata, statinfo=None):
|
|
if not metadata:
|
|
return False
|
|
|
|
if X_TIMESTAMP not in metadata.keys() or \
|
|
X_CONTENT_TYPE not in metadata.keys() or \
|
|
X_ETAG not in metadata.keys() or \
|
|
X_CONTENT_LENGTH not in metadata.keys() or \
|
|
X_TYPE not in metadata.keys() or \
|
|
X_OBJECT_TYPE not in metadata.keys():
|
|
return False
|
|
|
|
if statinfo and stat.S_ISREG(statinfo.st_mode):
|
|
|
|
# File length has changed
|
|
if int(metadata[X_CONTENT_LENGTH]) != statinfo.st_size:
|
|
return False
|
|
|
|
# File might have changed with length being the same.
|
|
if X_MTIME in metadata and \
|
|
normalize_timestamp(metadata[X_MTIME]) != \
|
|
normalize_timestamp(statinfo.st_mtime):
|
|
return False
|
|
|
|
if metadata[X_TYPE] == OBJECT:
|
|
return True
|
|
|
|
logging.warn('validate_object: metadata type is not OBJECT (%r)',
|
|
metadata[X_TYPE])
|
|
return False
|
|
|
|
|
|
def _read_for_etag(fp):
|
|
etag = md5()
|
|
while True:
|
|
chunk = do_read(fp, CHUNK_SIZE)
|
|
if chunk:
|
|
etag.update(chunk)
|
|
if len(chunk) >= CHUNK_SIZE:
|
|
# It is likely that we have more data to be read from the
|
|
# file. Yield the co-routine cooperatively to avoid
|
|
# consuming the worker during md5sum() calculations on
|
|
# large files.
|
|
sleep()
|
|
else:
|
|
break
|
|
return etag.hexdigest()
|
|
|
|
|
|
def _get_etag(path_or_fd):
|
|
"""
|
|
FIXME: It would be great to have a translator that returns the md5sum() of
|
|
the file as an xattr that can be simply fetched.
|
|
|
|
Since we don't have that we should yield after each chunk read and
|
|
computed so that we don't consume the worker thread.
|
|
"""
|
|
if isinstance(path_or_fd, int):
|
|
# We are given a file descriptor, so this is an invocation from the
|
|
# DiskFile.open() method.
|
|
fd = path_or_fd
|
|
etag = _read_for_etag(do_dup(fd))
|
|
do_lseek(fd, 0, os.SEEK_SET)
|
|
else:
|
|
# We are given a path to the object when the DiskDir.list_objects_iter
|
|
# method invokes us.
|
|
path = path_or_fd
|
|
fd = do_open(path, os.O_RDONLY)
|
|
etag = _read_for_etag(fd)
|
|
do_close(fd)
|
|
|
|
return etag
|
|
|
|
|
|
def get_object_metadata(obj_path_or_fd):
|
|
"""
|
|
Return metadata of object.
|
|
"""
|
|
if isinstance(obj_path_or_fd, int):
|
|
# We are given a file descriptor, so this is an invocation from the
|
|
# DiskFile.open() method.
|
|
stats = do_fstat(obj_path_or_fd)
|
|
else:
|
|
# We are given a path to the object when the DiskDir.list_objects_iter
|
|
# method invokes us.
|
|
stats = do_stat(obj_path_or_fd)
|
|
|
|
if not stats:
|
|
metadata = {}
|
|
else:
|
|
is_dir = stat.S_ISDIR(stats.st_mode)
|
|
metadata = {
|
|
X_TYPE: OBJECT,
|
|
X_TIMESTAMP: normalize_timestamp(stats.st_ctime),
|
|
X_CONTENT_TYPE: DIR_TYPE if is_dir else FILE_TYPE,
|
|
X_OBJECT_TYPE: DIR_NON_OBJECT if is_dir else FILE,
|
|
X_CONTENT_LENGTH: 0 if is_dir else stats.st_size,
|
|
X_MTIME: 0 if is_dir else normalize_timestamp(stats.st_mtime),
|
|
X_ETAG: md5().hexdigest() if is_dir else _get_etag(obj_path_or_fd)}
|
|
return metadata
|
|
|
|
|
|
def restore_metadata(path, metadata):
|
|
meta_orig = read_metadata(path)
|
|
if meta_orig:
|
|
meta_new = meta_orig.copy()
|
|
meta_new.update(metadata)
|
|
else:
|
|
meta_new = metadata
|
|
if meta_orig != meta_new:
|
|
write_metadata(path, meta_new)
|
|
return meta_new
|
|
|
|
|
|
def create_object_metadata(obj_path_or_fd):
|
|
# We must accept either a path or a file descriptor as an argument to this
|
|
# method, as the diskfile modules uses a file descriptior and the DiskDir
|
|
# module (for container operations) uses a path.
|
|
metadata = get_object_metadata(obj_path_or_fd)
|
|
return restore_metadata(obj_path_or_fd, metadata)
|
|
|
|
|
|
# The following dir_xxx calls should definitely be replaced
|
|
# with a Metadata class to encapsulate their implementation.
|
|
# :FIXME: For now we have them as functions, but we should
|
|
# move them to a class.
|
|
def dir_is_object(metadata):
|
|
"""
|
|
Determine if the directory with the path specified
|
|
has been identified as an object
|
|
"""
|
|
return metadata.get(X_OBJECT_TYPE, "") == DIR_OBJECT
|
|
|
|
|
|
def rmobjdir(dir_path):
|
|
"""
|
|
Removes the directory as long as there are no objects stored in it. This
|
|
works for containers also.
|
|
"""
|
|
try:
|
|
do_rmdir(dir_path)
|
|
except OSError as err:
|
|
if err.errno == errno.ENOENT:
|
|
# No such directory exists
|
|
return False
|
|
if err.errno != errno.ENOTEMPTY:
|
|
raise
|
|
# Handle this non-empty directories below.
|
|
else:
|
|
return True
|
|
|
|
# We have a directory that is not empty, walk it to see if it is filled
|
|
# with empty sub-directories that are not user created objects
|
|
# (gratuitously created as a result of other object creations).
|
|
for (path, dirs, files) in do_walk(dir_path, topdown=False):
|
|
for directory in dirs:
|
|
fullpath = os.path.join(path, directory)
|
|
|
|
try:
|
|
metadata = read_metadata(fullpath)
|
|
except IOError as err:
|
|
if err.errno == errno.ENOENT:
|
|
# Ignore removal from another entity.
|
|
continue
|
|
raise
|
|
else:
|
|
if dir_is_object(metadata):
|
|
# Wait, this is an object created by the caller
|
|
# We cannot delete
|
|
return False
|
|
|
|
# Directory is not an object created by the caller
|
|
# so we can go ahead and delete it.
|
|
try:
|
|
do_rmdir(fullpath)
|
|
except OSError as err:
|
|
if err.errno == errno.ENOTEMPTY:
|
|
# Directory is not empty, it might have objects in it
|
|
return False
|
|
if err.errno == errno.ENOENT:
|
|
# No such directory exists, already removed, ignore
|
|
continue
|
|
raise
|
|
|
|
try:
|
|
do_rmdir(dir_path)
|
|
except OSError as err:
|
|
if err.errno == errno.ENOTEMPTY:
|
|
# Directory is not empty, race with object creation
|
|
return False
|
|
if err.errno == errno.ENOENT:
|
|
# No such directory exists, already removed, ignore
|
|
return True
|
|
raise
|
|
else:
|
|
return True
|
|
|
|
|
|
def write_pickle(obj, dest, tmp=None, pickle_protocol=0):
|
|
"""
|
|
Ensure that a pickle file gets written to disk. The file is first written
|
|
to a tmp file location in the destination directory path, ensured it is
|
|
synced to disk, then moved to its final destination name.
|
|
|
|
This version takes advantage of Gluster's dot-prefix-dot-suffix naming
|
|
where the a file named ".thefile.name.9a7aasv" is hashed to the same
|
|
Gluster node as "thefile.name". This ensures the renaming of a temp file
|
|
once written does not move it to another Gluster node.
|
|
|
|
:param obj: python object to be pickled
|
|
:param dest: path of final destination file
|
|
:param tmp: path to tmp to use, defaults to None (ignored)
|
|
:param pickle_protocol: protocol to pickle the obj with, defaults to 0
|
|
"""
|
|
dirname = os.path.dirname(dest)
|
|
# Create destination directory
|
|
try:
|
|
os.makedirs(dirname)
|
|
except OSError as err:
|
|
if err.errno != errno.EEXIST:
|
|
raise
|
|
basename = os.path.basename(dest)
|
|
tmpname = '.' + basename + '.' + \
|
|
md5(basename + str(random.random())).hexdigest()
|
|
tmppath = os.path.join(dirname, tmpname)
|
|
with open(tmppath, 'wb') as fo:
|
|
pickle.dump(obj, fo, pickle_protocol)
|
|
# TODO: This flush() method call turns into a flush() system call
|
|
# We'll need to wrap this as well, but we would do this by writing
|
|
# a context manager for our own open() method which returns an object
|
|
# in fo which makes the gluster API call.
|
|
fo.flush()
|
|
do_fsync(fo)
|
|
do_rename(tmppath, dest)
|