OpenStack Security Guide December 4, 2013 havana

Keystone

Keystone is the commonly used Identity provider in OpenStack. It may
also be used for authentication in Object Storage. Coverage of securing
Keystone is already provided in other documentation.

SWAuth

SWAuth is another popular alternative to Keystone. In contrast to
Keystone it stores the user accounts, credentials, and metadata in object
storage itself. More specifics about where the objects are stored can be
found on the SWAuth website at http://gholt.github.io/swauth/.

SWAuth has these types of roles (or groups) for a user:

.super_admin Can perform any action on any OpenStack
Account, Container, or Object

.reseller_admin Can perform most actions on any OpenStack
Account, Container, or Object. Cannot create
other reseller admins.

.admin Can perform actions limited to the single
OpenStack Account it belongs to

Regular User Can access containers or objects they have
permission to in the OpenStack Account to
which they belong

The following table provides a matrix of what each role/group can do:

Figure 21.3. Object storage SWAuth role matrix

Role/Group Capabilities

Get List of Get Modify

Create
Accounts | Account Get Create Create Set Get
(Get Admin = Details A?:f;.ii[Aiiféi[User User- Reself(;r - D&{;Zfre Service Account Useréggfnge
info, (Users, Details Admin "0 Regular Endpoints Groups poon
gel reseller) efc)

m_—Y VYV VYV VY
mm——_—Y VY VYV VY
X v x xvvVxvvVxv v
X X X X X X X X X X X X

-admin

(group)
Regular user

(type)

O Warning

The super admin key is stored in /etc/swift/proxy-
server.conf and MUST be protected! See the File

103

OpenStack Security Guide December 4, 2013 havana

Permissions section for guidance on protecting this file.
Frequent changing of this key is recommended.

One approach for administration is to create an OpenStack Object Storage
Account called "CloudAdmins" and create reseller_admin users in that
account. Each user will be able to do administrative functions in all the
other accounts. Creating a reseller_admin will require the super admin key.

Another useful way to secure the super admin key is to have it exist only
on the proxy server and retrieve the key on-demand via ssh or by running
the command on the proxy server itself and using a grep to extract the key
on the fly.

Protecting cloud administration

When using SWAuth you can actually designate that certain proxy
service nodes are to NOT allow administrator API calls. This is useful if
you have Proxy service nodes on the public Internet and wish to restrict
administration functions to only special Proxy service nodes on a private
network. This is done by setting the allow account managment to
false in your proxy-server.conf.

Another important consideration is that the SWAuth command line tools
expose the user credentials on the command-line. The system from which
they are executed must be secure to prevent disclosure in the process

list to other uses. Another option is to use the SWAuth admin REST API
to implement your own admin CLI tools that don’t expose the key as a
command-line option.

Salting and hashing passwords

SWAuth by default stores passwords in clear-text. It also offers a sha1
hashing provider, but the salt used is global. Additionally, no iterations or
key stretching is performed. This is a limitation of SWAuth.

You may optionally add-in your own hashing code or provider as a hook to
SWAuth. See the SWAuUth code and site for details.

If you use the global salt be sure to secure it and back it up. If you have
multiple proxy nodes each one has to have a copy so that may be good
enough for you. If you ever lose it or change it then all existing user
passwords will not work and will have to be reset.

You should make sure the salt you choose is generated using a
cryptographically secure random number generator and of sufficient
length. At least 20 characters is recommended.

104

OpenStack Security Guide December 4, 2013 havana

The salt is stored in the /etc/swift/proxy-server.conf file which
must be secured with proper ACLs. See the File Permissions section for
guidance.

Other notable items

In /etc/swift/swift.conf on every service node there is a
"swift_hash_path_suffix" setting. This is provided to reduce the chance of
hash collisions for objects being stored and avert one user overwriting the
data of another user.

This value should be initially set with a cryptographically secure random

number generator and consistent across all service nodes. Ensure that it

is protected with proper ACLs and that you have a backup copy to avoid
data loss.

105

