
These messages can be used for testing unicode in monasca-log-api and monasca-tempest-plugin. Change-Id: I51843dcda5059599a87e3e136a75faa25da67660 Story: 2001400 Task: 6222
431 lines
18 KiB
Python
431 lines
18 KiB
Python
# coding=utf-8
|
|
# (C) Copyright 2016-2017 Hewlett Packard Enterprise Development LP
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
|
# implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from oslotest import base
|
|
import codecs
|
|
import six
|
|
|
|
from monasca_common.validation import metrics as metric_validator
|
|
|
|
# a few valid characters to test
|
|
valid_name_chars = ".'_-"
|
|
invalid_name_chars = " <>={}(),\"\\\\;&"
|
|
|
|
# a few valid characters to test
|
|
valid_dimension_chars = " .'_-"
|
|
invalid_dimension_chars = "<>={},\"\\\\;&"
|
|
|
|
|
|
def _hex_to_unicode(hex_raw):
|
|
hex_raw = six.b(hex_raw.replace(' ', ''))
|
|
hex_str_raw = codecs.getdecoder('hex')(hex_raw)[0]
|
|
hex_str = hex_str_raw.decode('utf-8', 'replace')
|
|
return hex_str
|
|
|
|
# NOTE(trebskit) => http://www.cl.cam.ac.uk/~mgk25/ucs/examples/UTF-8-test.txt
|
|
UNICODE_MESSAGES = [
|
|
# 1 correct UTF-8 text
|
|
{'case': 'greek', 'input': 'κόσμε'},
|
|
# 2.3 Other boundary conditions
|
|
{'case': 'stress_2_3_1', 'input': _hex_to_unicode('ed 9f bf')},
|
|
{'case': 'stress_2_3_2', 'input': _hex_to_unicode('ee 80 80')},
|
|
{'case': 'stress_2_3_3', 'input': _hex_to_unicode('ef bf bd')},
|
|
{'case': 'stress_2_3_4', 'input': _hex_to_unicode('f4 8f bf bf')},
|
|
{'case': 'stress_2_3_5', 'input': _hex_to_unicode('f4 90 80 80')},
|
|
# 3.5 Impossible byes
|
|
{'case': 'stress_3_5_1', 'input': _hex_to_unicode('fe')},
|
|
{'case': 'stress_3_5_2', 'input': _hex_to_unicode('ff')},
|
|
{'case': 'stress_3_5_3', 'input': _hex_to_unicode('fe fe ff ff')},
|
|
# 4.1 Examples of an overlong ASCII character
|
|
{'case': 'stress_4_1_1', 'input': _hex_to_unicode('c0 af')},
|
|
{'case': 'stress_4_1_2', 'input': _hex_to_unicode('e0 80 af')},
|
|
{'case': 'stress_4_1_3', 'input': _hex_to_unicode('f0 80 80 af')},
|
|
{'case': 'stress_4_1_4', 'input': _hex_to_unicode('f8 80 80 80 af')},
|
|
{'case': 'stress_4_1_5', 'input': _hex_to_unicode('fc 80 80 80 80 af')},
|
|
# 4.2 Maximum overlong sequences
|
|
{'case': 'stress_4_2_1', 'input': _hex_to_unicode('c1 bf')},
|
|
{'case': 'stress_4_2_2', 'input': _hex_to_unicode('e0 9f bf')},
|
|
{'case': 'stress_4_2_3', 'input': _hex_to_unicode('f0 8f bf bf')},
|
|
{'case': 'stress_4_2_4', 'input': _hex_to_unicode('f8 87 bf bf bf')},
|
|
{'case': 'stress_4_2_5', 'input': _hex_to_unicode('fc 83 bf bf bf bf')},
|
|
# 4.3 Overlong representation of the NUL character
|
|
{'case': 'stress_4_3_1', 'input': _hex_to_unicode('c0 80')},
|
|
{'case': 'stress_4_3_2', 'input': _hex_to_unicode('e0 80 80')},
|
|
{'case': 'stress_4_3_3', 'input': _hex_to_unicode('f0 80 80 80')},
|
|
{'case': 'stress_4_3_4', 'input': _hex_to_unicode('f8 80 80 80 80')},
|
|
{'case': 'stress_4_3_5', 'input': _hex_to_unicode('fc 80 80 80 80 80')}
|
|
]
|
|
|
|
|
|
class TestMetricValidation(base.BaseTestCase):
|
|
def test_valid_single_metric(self):
|
|
metric = {"name": "test_metric_name",
|
|
"dimensions": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
metric_validator.validate(metric)
|
|
|
|
def test_valid_metrics(self):
|
|
metrics = [
|
|
{"name": "name1",
|
|
"dimensions": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"timestamp": 1405630174123,
|
|
"value": 1.0},
|
|
{"name": "name2",
|
|
"dimensions": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"value_meta": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"timestamp": 1405630174123,
|
|
"value": 2.0}
|
|
]
|
|
metric_validator.validate(metrics)
|
|
|
|
def test_valid_metric_unicode_dimension_value(self):
|
|
metric = {"name": "test_metric_name",
|
|
"timestamp": 1405630174123,
|
|
"dimensions": {UNICODE_MESSAGES[0]['input']: 'B', 'B': 'C',
|
|
'D': 'E'},
|
|
"value": 5}
|
|
metric_validator.validate(metric)
|
|
|
|
def test_valid_metric_unicode_dimension_key(self):
|
|
metric = {"name": 'test_metric_name',
|
|
"dimensions": {'A': 'B', 'B': UNICODE_MESSAGES[0]['input'],
|
|
'D': 'E'},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
metric_validator.validate(metric)
|
|
|
|
def test_valid_metric_unicode_metric_name(self):
|
|
metric = {"name": UNICODE_MESSAGES[0]['input'],
|
|
"dimensions": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
metric_validator.validate(metric)
|
|
|
|
def test_invalid_metric_name(self):
|
|
metric = {'name': "TooLarge" * 255,
|
|
"dimensions": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidMetricName,
|
|
"invalid length for metric name",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_invalid_metric_name_empty(self):
|
|
metric = {"name": "",
|
|
"dimensions": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidMetricName,
|
|
"invalid length for metric name",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_invalid_metric_name_non_str(self):
|
|
metric = {"name": 133,
|
|
"dimensions": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidMetricName,
|
|
"invalid metric name type",
|
|
metric_validator.validate,
|
|
metric)
|
|
|
|
def test_invalid_metric_restricted_characters(self):
|
|
metric = {"name": '"Foo"',
|
|
"dimensions": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidMetricName,
|
|
"invalid characters in metric name",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_invalid_dimension_empty_key(self):
|
|
metric = {"name": "test_metric_name",
|
|
"dimensions": {'A': 'B', '': 'C', 'D': 'E'},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidDimensionKey,
|
|
"invalid length \(0\) for dimension key",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_invalid_dimension_empty_value(self):
|
|
metric = {"name": "test_metric_name",
|
|
"dimensions": {'A': 'B', 'B': 'C', 'D': ''},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidDimensionValue,
|
|
"invalid length \(0\) for dimension value",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_invalid_dimension_non_str_key(self):
|
|
metric = {"name": "test_metric_name",
|
|
"dimensions": {'A': 'B', 4: 'C', 'D': 'E'},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidDimensionKey,
|
|
"invalid dimension key type",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_invalid_dimension_non_str_value(self):
|
|
metric = {"name": "test_metric_name",
|
|
"dimensions": {'A': 13.3, 'B': 'C', 'D': 'E'},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidDimensionValue,
|
|
"invalid dimension value type",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_invalid_dimension_key_length(self):
|
|
metric = {"name": "test_metric_name",
|
|
"dimensions": {'A'*256: 'B', 'B': 'C', 'D': 'E'},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidDimensionKey,
|
|
"invalid length \(256\) for dimension key",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_invalid_dimension_value_length(self):
|
|
metric = {"name": "test_metric_name",
|
|
"dimensions": {'A': 'B', 'B': 'C'*256, 'D': 'E'},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidDimensionValue,
|
|
"invalid length \(256\) for dimension value",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_invalid_dimension_key_restricted_characters(self):
|
|
metric = {"name": "test_metric_name",
|
|
"dimensions": {'A': 'B', 'B': 'C', 'D=': 'E'},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidDimensionKey,
|
|
"invalid characters in dimension key",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_invalid_dimension_value_restricted_characters(self):
|
|
metric = {"name": "test_metric_name",
|
|
"dimensions": {'A': 'B;', 'B': 'C', 'D': 'E'},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidDimensionValue,
|
|
"invalid characters in dimension value",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_invalid_dimension_key_leading_underscore(self):
|
|
metric = {"name": "test_metric_name",
|
|
"dimensions": {'_A': 'B', 'B': 'C', 'D': 'E'},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidDimensionKey,
|
|
"invalid characters in dimension key",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_invalid_value_type(self):
|
|
metric = {"name": "test_metric_name",
|
|
"dimensions": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"timestamp": 1405630174123,
|
|
"value": "value"}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidValue,
|
|
"invalid value type",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_invalid_value(self):
|
|
metric = {"name": "test_metric_name",
|
|
"dimensions": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"timestamp": 1405630174123,
|
|
"value": None}
|
|
|
|
for value in ('nan', 'inf', '-inf'):
|
|
metric['value'] = float(value)
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidValue,
|
|
value,
|
|
metric_validator.validate, metric)
|
|
|
|
def test_valid_name_chars(self):
|
|
for c in valid_name_chars:
|
|
metric = {"name": 'test{}counter'.format(c),
|
|
"dimensions": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
metric_validator.validate(metric)
|
|
|
|
def test_invalid_name_chars(self):
|
|
for c in invalid_name_chars:
|
|
metric = {"name": 'test{}counter'.format(c),
|
|
"dimensions": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidMetricName,
|
|
"invalid characters in metric name",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_valid_dimension_chars(self):
|
|
for c in valid_dimension_chars:
|
|
metric = {"name": "test_name",
|
|
"dimensions":
|
|
{"test{}key".format(c): "test{}value".format(c)},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
metric_validator.validate(metric)
|
|
|
|
def test_invalid_dimension_key_chars(self):
|
|
for c in invalid_dimension_chars:
|
|
metric = {"name": "test_name",
|
|
"dimensions": {'test{}key'.format(c): 'test-value'},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidDimensionKey,
|
|
"invalid characters in dimension key",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_invalid_dimension_value_chars(self):
|
|
for c in invalid_dimension_chars:
|
|
metric = {"name": "test_name",
|
|
"dimensions": {'test-key': 'test{}value'.format(c)},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidDimensionValue,
|
|
"invalid characters in dimension value",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_invalid_too_many_value_meta(self):
|
|
value_meta = {}
|
|
for i in six.moves.range(0, 17):
|
|
value_meta['key{}'.format(i)] = 'value{}'.format(i)
|
|
metric = {"name": "test_metric_name",
|
|
"dimensions": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"value_meta": value_meta,
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidValueMeta,
|
|
"Too many valueMeta entries",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_invalid_empty_value_meta_key(self):
|
|
metric = {"name": "test_metric_name",
|
|
"dimensions": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"value_meta": {'': 'BBB'},
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidValueMeta,
|
|
"valueMeta name cannot be empty",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_invalid_too_long_value_meta_key(self):
|
|
key = "K"
|
|
for i in six.moves.range(0, metric_validator.VALUE_META_NAME_MAX_LENGTH):
|
|
key = "{}{}".format(key, "1")
|
|
value_meta = {key: 'BBB'}
|
|
metric = {"name": "test_metric_name",
|
|
"dimensions": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"value_meta": value_meta,
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidValueMeta,
|
|
"valueMeta name too long",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_invalid_too_large_value_meta(self):
|
|
value_meta_value = ""
|
|
num_value_meta = 10
|
|
for i in six.moves.range(0, int(metric_validator.VALUE_META_VALUE_MAX_LENGTH / num_value_meta)):
|
|
value_meta_value = '{}{}'.format(value_meta_value, '1')
|
|
value_meta = {}
|
|
for i in six.moves.range(0, num_value_meta):
|
|
value_meta['key{}'.format(i)] = value_meta_value
|
|
metric = {"name": "test_metric_name",
|
|
"dimensions": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"value_meta": value_meta,
|
|
"timestamp": 1405630174123,
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidValueMeta,
|
|
"Unable to serialize valueMeta into JSON",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_invalid_timestamp(self):
|
|
metric = {'name': 'test_metric_name',
|
|
"dimensions": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"timestamp": "invalid_timestamp",
|
|
"value": 5}
|
|
self.assertRaisesRegex(
|
|
metric_validator.InvalidTimeStamp,
|
|
"invalid timestamp type",
|
|
metric_validator.validate, metric)
|
|
|
|
def test_valid_metrics_by_components(self):
|
|
metrics = [
|
|
{"name": "name1",
|
|
"dimensions": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"timestamp": 1405630174123,
|
|
"value": 1.0},
|
|
{"name": "name2",
|
|
"dimensions": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"value_meta": {"key1": "value1",
|
|
"key2": "value2"},
|
|
"timestamp": 1405630174123,
|
|
"value": 2.0}
|
|
]
|
|
for i in six.moves.range(len(metrics)):
|
|
metric_validator.validate_name(metrics[i]['name'])
|
|
metric_validator.validate_value(metrics[i]['value'])
|
|
metric_validator.validate_timestamp(metrics[i]['timestamp'])
|
|
if 'dimensions' in metrics[i]:
|
|
metric_validator.validate_dimensions(metrics[i]['dimensions'])
|
|
if 'value_meta' in metrics[i]:
|
|
metric_validator.validate_value_meta(metrics[i]['value_meta'])
|