import collections import copy import functools import logging import select import time import monasca_common.kafka_lib.common as kafka_common from monasca_common.kafka_lib.common import (TopicAndPartition, BrokerMetadata, ConnectionError, FailedPayloadsError, KafkaTimeoutError, KafkaUnavailableError, LeaderNotAvailableError, UnknownTopicOrPartitionError, NotLeaderForPartitionError, ReplicaNotAvailableError) from monasca_common.kafka_lib.conn import collect_hosts, KafkaConnection, DEFAULT_SOCKET_TIMEOUT_SECONDS from monasca_common.kafka_lib.protocol import KafkaProtocol from monasca_common.kafka_lib.util import kafka_bytestring log = logging.getLogger(__name__) class KafkaClient(object): CLIENT_ID = b'kafka-python' # NOTE: The timeout given to the client should always be greater than the # one passed to SimpleConsumer.get_message(), otherwise you can get a # socket timeout. def __init__(self, hosts, client_id=CLIENT_ID, timeout=DEFAULT_SOCKET_TIMEOUT_SECONDS, correlation_id=0): # We need one connection to bootstrap self.client_id = kafka_bytestring(client_id) self.timeout = timeout self.hosts = collect_hosts(hosts) self.correlation_id = correlation_id # create connections only when we need them self.conns = {} self.brokers = {} # broker_id -> BrokerMetadata self.topics_to_brokers = {} # TopicAndPartition -> BrokerMetadata self.topic_partitions = {} # topic -> partition -> PartitionMetadata self.load_metadata_for_topics() # bootstrap with all metadata ################## # Private API # ################## def _get_conn(self, host, port): """Get or create a connection to a broker using host and port""" host_key = (host, port) if host_key not in self.conns: self.conns[host_key] = KafkaConnection( host, port, timeout=self.timeout ) return self.conns[host_key] def _get_leader_for_partition(self, topic, partition): """ Returns the leader for a partition or None if the partition exists but has no leader. UnknownTopicOrPartitionError will be raised if the topic or partition is not part of the metadata. LeaderNotAvailableError is raised if server has metadata, but there is no current leader """ key = TopicAndPartition(topic, partition) # Use cached metadata if it is there if self.topics_to_brokers.get(key) is not None: return self.topics_to_brokers[key] # Otherwise refresh metadata # If topic does not already exist, this will raise # UnknownTopicOrPartitionError if not auto-creating # LeaderNotAvailableError otherwise until partitions are created self.load_metadata_for_topics(topic) # If the partition doesn't actually exist, raise if partition not in self.topic_partitions.get(topic, []): raise UnknownTopicOrPartitionError(key) # If there's no leader for the partition, raise meta = self.topic_partitions[topic][partition] if meta.leader == -1: raise LeaderNotAvailableError(meta) # Otherwise return the BrokerMetadata return self.brokers[meta.leader] def _get_coordinator_for_group(self, group): """ Returns the coordinator broker for a consumer group. ConsumerCoordinatorNotAvailableCode will be raised if the coordinator does not currently exist for the group. OffsetsLoadInProgressCode is raised if the coordinator is available but is still loading offsets from the internal topic """ resp = self.send_consumer_metadata_request(group) # If there's a problem with finding the coordinator, raise the # provided error kafka_common.check_error(resp) # Otherwise return the BrokerMetadata return BrokerMetadata(resp.nodeId, resp.host, resp.port) def _next_id(self): """Generate a new correlation id""" # modulo to keep w/i int32 self.correlation_id = (self.correlation_id + 1) % 2**31 return self.correlation_id def _send_broker_unaware_request(self, payloads, encoder_fn, decoder_fn): """ Attempt to send a broker-agnostic request to one of the available brokers. Keep trying until you succeed. """ for (host, port) in self.hosts: requestId = self._next_id() log.debug('Request %s: %s', requestId, payloads) try: conn = self._get_conn(host, port) request = encoder_fn(client_id=self.client_id, correlation_id=requestId, payloads=payloads) conn.send(requestId, request) response = conn.recv(requestId) decoded = decoder_fn(response) log.debug('Response %s: %s', requestId, decoded) return decoded except Exception: log.exception('Error sending request [%s] to server %s:%s, ' 'trying next server', requestId, host, port) raise KafkaUnavailableError('All servers failed to process request') def _send_broker_aware_request(self, payloads, encoder_fn, decoder_fn): """ Group a list of request payloads by topic+partition and send them to the leader broker for that partition using the supplied encode/decode functions Arguments: payloads: list of object-like entities with a topic (str) and partition (int) attribute; payloads with duplicate topic-partitions are not supported. encode_fn: a method to encode the list of payloads to a request body, must accept client_id, correlation_id, and payloads as keyword arguments decode_fn: a method to decode a response body into response objects. The response objects must be object-like and have topic and partition attributes Returns: List of response objects in the same order as the supplied payloads """ # encoders / decoders do not maintain ordering currently # so we need to keep this so we can rebuild order before returning original_ordering = [(p.topic, p.partition) for p in payloads] # Group the requests by topic+partition brokers_for_payloads = [] payloads_by_broker = collections.defaultdict(list) responses = {} for payload in payloads: try: leader = self._get_leader_for_partition(payload.topic, payload.partition) payloads_by_broker[leader].append(payload) brokers_for_payloads.append(leader) except KafkaUnavailableError as e: log.warning('KafkaUnavailableError attempting to send request ' 'on topic %s partition %d', payload.topic, payload.partition) topic_partition = (payload.topic, payload.partition) responses[topic_partition] = FailedPayloadsError(payload) # For each broker, send the list of request payloads # and collect the responses and errors broker_failures = [] # For each KafkaConnection keep the real socket so that we can use # a select to perform unblocking I/O connections_by_socket = {} for broker, payloads in payloads_by_broker.items(): requestId = self._next_id() log.debug('Request %s to %s: %s', requestId, broker, payloads) request = encoder_fn(client_id=self.client_id, correlation_id=requestId, payloads=payloads) # Send the request, recv the response try: conn = self._get_conn(broker.host.decode('utf-8'), broker.port) conn.send(requestId, request) except ConnectionError as e: broker_failures.append(broker) log.warning('ConnectionError attempting to send request %s ' 'to server %s: %s', requestId, broker, e) for payload in payloads: topic_partition = (payload.topic, payload.partition) responses[topic_partition] = FailedPayloadsError(payload) # No exception, try to get response else: # decoder_fn=None signal that the server is expected to not # send a response. This probably only applies to # ProduceRequest w/ acks = 0 if decoder_fn is None: log.debug('Request %s does not expect a response ' '(skipping conn.recv)', requestId) for payload in payloads: topic_partition = (payload.topic, payload.partition) responses[topic_partition] = None continue else: connections_by_socket[conn.get_connected_socket()] = (conn, broker, requestId) conn = None while connections_by_socket: sockets = connections_by_socket.keys() rlist, _, _ = select.select(sockets, [], [], None) conn, broker, requestId = connections_by_socket.pop(rlist[0]) try: response = conn.recv(requestId) except ConnectionError as e: broker_failures.append(broker) log.warning('ConnectionError attempting to receive a ' 'response to request %s from server %s: %s', requestId, broker, e) for payload in payloads_by_broker[broker]: topic_partition = (payload.topic, payload.partition) responses[topic_partition] = FailedPayloadsError(payload) else: _resps = [] for payload_response in decoder_fn(response): topic_partition = (payload_response.topic, payload_response.partition) responses[topic_partition] = payload_response _resps.append(payload_response) log.debug('Response %s: %s', requestId, _resps) # Connection errors generally mean stale metadata # although sometimes it means incorrect api request # Unfortunately there is no good way to tell the difference # so we'll just reset metadata on all errors to be safe if broker_failures: self.reset_all_metadata() # Return responses in the same order as provided return [responses[tp] for tp in original_ordering] def _send_consumer_aware_request(self, group, payloads, encoder_fn, decoder_fn): """ Send a list of requests to the consumer coordinator for the group specified using the supplied encode/decode functions. As the payloads that use consumer-aware requests do not contain the group (e.g. OffsetFetchRequest), all payloads must be for a single group. Arguments: group: the name of the consumer group (str) the payloads are for payloads: list of object-like entities with topic (str) and partition (int) attributes; payloads with duplicate topic+partition are not supported. encode_fn: a method to encode the list of payloads to a request body, must accept client_id, correlation_id, and payloads as keyword arguments decode_fn: a method to decode a response body into response objects. The response objects must be object-like and have topic and partition attributes Returns: List of response objects in the same order as the supplied payloads """ # encoders / decoders do not maintain ordering currently # so we need to keep this so we can rebuild order before returning original_ordering = [(p.topic, p.partition) for p in payloads] broker = self._get_coordinator_for_group(group) # Send the list of request payloads and collect the responses and # errors responses = {} requestId = self._next_id() log.debug('Request %s to %s: %s', requestId, broker, payloads) request = encoder_fn(client_id=self.client_id, correlation_id=requestId, payloads=payloads) # Send the request, recv the response try: conn = self._get_conn(broker.host.decode('utf-8'), broker.port) conn.send(requestId, request) except ConnectionError as e: log.warning('ConnectionError attempting to send request %s ' 'to server %s: %s', requestId, broker, e) for payload in payloads: topic_partition = (payload.topic, payload.partition) responses[topic_partition] = FailedPayloadsError(payload) # No exception, try to get response else: # decoder_fn=None signal that the server is expected to not # send a response. This probably only applies to # ProduceRequest w/ acks = 0 if decoder_fn is None: log.debug('Request %s does not expect a response ' '(skipping conn.recv)', requestId) for payload in payloads: topic_partition = (payload.topic, payload.partition) responses[topic_partition] = None return [] try: response = conn.recv(requestId) except ConnectionError as e: log.warning('ConnectionError attempting to receive a ' 'response to request %s from server %s: %s', requestId, broker, e) for payload in payloads: topic_partition = (payload.topic, payload.partition) responses[topic_partition] = FailedPayloadsError(payload) else: _resps = [] for payload_response in decoder_fn(response): topic_partition = (payload_response.topic, payload_response.partition) responses[topic_partition] = payload_response _resps.append(payload_response) log.debug('Response %s: %s', requestId, _resps) # Return responses in the same order as provided return [responses[tp] for tp in original_ordering] def __repr__(self): return '' % (self.client_id) def _raise_on_response_error(self, resp): # Response can be an unraised exception object (FailedPayloadsError) if isinstance(resp, Exception): raise resp # Or a server api error response try: kafka_common.check_error(resp) except (UnknownTopicOrPartitionError, NotLeaderForPartitionError): self.reset_topic_metadata(resp.topic) raise # Return False if no error to enable list comprehensions return False ################# # Public API # ################# def close(self): for conn in self.conns.values(): conn.close() def copy(self): """ Create an inactive copy of the client object, suitable for passing to a separate thread. Note that the copied connections are not initialized, so reinit() must be called on the returned copy. """ c = copy.deepcopy(self) for key in c.conns: c.conns[key] = self.conns[key].copy() return c def reinit(self): for conn in self.conns.values(): conn.reinit() def reset_topic_metadata(self, *topics): for topic in topics: for topic_partition in list(self.topics_to_brokers.keys()): if topic_partition.topic == topic: del self.topics_to_brokers[topic_partition] if topic in self.topic_partitions: del self.topic_partitions[topic] def reset_all_metadata(self): self.topics_to_brokers.clear() self.topic_partitions.clear() def has_metadata_for_topic(self, topic): topic = kafka_bytestring(topic) return ( topic in self.topic_partitions and len(self.topic_partitions[topic]) > 0 ) def get_partition_ids_for_topic(self, topic): topic = kafka_bytestring(topic) if topic not in self.topic_partitions: return [] return sorted(list(self.topic_partitions[topic])) @property def topics(self): return list(self.topic_partitions.keys()) def ensure_topic_exists(self, topic, timeout = 30): start_time = time.time() while not self.has_metadata_for_topic(topic): if time.time() > start_time + timeout: raise KafkaTimeoutError('Unable to create topic {0}'.format(topic)) try: self.load_metadata_for_topics(topic) except LeaderNotAvailableError: pass except UnknownTopicOrPartitionError: # Server is not configured to auto-create # retrying in this case will not help raise time.sleep(.5) def load_metadata_for_topics(self, *topics): """ Fetch broker and topic-partition metadata from the server, and update internal data: broker list, topic/partition list, and topic/parition -> broker map This method should be called after receiving any error Arguments: *topics (optional): If a list of topics is provided, the metadata refresh will be limited to the specified topics only. Exceptions: ---------- If the broker is configured to not auto-create topics, expect UnknownTopicOrPartitionError for topics that don't exist If the broker is configured to auto-create topics, expect LeaderNotAvailableError for new topics until partitions have been initialized. Exceptions *will not* be raised in a full refresh (i.e. no topic list) In this case, error codes will be logged as errors Partition-level errors will also not be raised here (a single partition w/o a leader, for example) """ topics = [kafka_bytestring(t) for t in topics] if topics: for topic in topics: self.reset_topic_metadata(topic) else: self.reset_all_metadata() resp = self.send_metadata_request(topics) log.debug('Updating broker metadata: %s', resp.brokers) log.debug('Updating topic metadata: %s', resp.topics) self.brokers = dict([(broker.nodeId, broker) for broker in resp.brokers]) for topic_metadata in resp.topics: topic = topic_metadata.topic partitions = topic_metadata.partitions # Errors expected for new topics try: kafka_common.check_error(topic_metadata) except (UnknownTopicOrPartitionError, LeaderNotAvailableError) as e: # Raise if the topic was passed in explicitly if topic in topics: raise # Otherwise, just log a warning log.error('Error loading topic metadata for %s: %s', topic, type(e)) continue self.topic_partitions[topic] = {} for partition_metadata in partitions: partition = partition_metadata.partition leader = partition_metadata.leader self.topic_partitions[topic][partition] = partition_metadata # Populate topics_to_brokers dict topic_part = TopicAndPartition(topic, partition) # Check for partition errors try: kafka_common.check_error(partition_metadata) # If No Leader, topics_to_brokers topic_partition -> None except LeaderNotAvailableError: log.error('No leader for topic %s partition %d', topic, partition) self.topics_to_brokers[topic_part] = None continue # If one of the replicas is unavailable -- ignore # this error code is provided for admin purposes only # we never talk to replicas, only the leader except ReplicaNotAvailableError: log.debug('Some (non-leader) replicas not available for topic %s partition %d', topic, partition) # If Known Broker, topic_partition -> BrokerMetadata if leader in self.brokers: self.topics_to_brokers[topic_part] = self.brokers[leader] # If Unknown Broker, fake BrokerMetadata so we dont lose the id # (not sure how this could happen. server could be in bad state) else: self.topics_to_brokers[topic_part] = BrokerMetadata( leader, None, None ) def send_metadata_request(self, payloads=[], fail_on_error=True, callback=None): encoder = KafkaProtocol.encode_metadata_request decoder = KafkaProtocol.decode_metadata_response return self._send_broker_unaware_request(payloads, encoder, decoder) def send_consumer_metadata_request(self, payloads=[], fail_on_error=True, callback=None): encoder = KafkaProtocol.encode_consumer_metadata_request decoder = KafkaProtocol.decode_consumer_metadata_response return self._send_broker_unaware_request(payloads, encoder, decoder) def send_produce_request(self, payloads=[], acks=1, timeout=1000, fail_on_error=True, callback=None): """ Encode and send some ProduceRequests ProduceRequests will be grouped by (topic, partition) and then sent to a specific broker. Output is a list of responses in the same order as the list of payloads specified Arguments: payloads (list of ProduceRequest): produce requests to send to kafka ProduceRequest payloads must not contain duplicates for any topic-partition. acks (int, optional): how many acks the servers should receive from replica brokers before responding to the request. If it is 0, the server will not send any response. If it is 1, the server will wait until the data is written to the local log before sending a response. If it is -1, the server will wait until the message is committed by all in-sync replicas before sending a response. For any value > 1, the server will wait for this number of acks to occur (but the server will never wait for more acknowledgements than there are in-sync replicas). defaults to 1. timeout (int, optional): maximum time in milliseconds the server can await the receipt of the number of acks, defaults to 1000. fail_on_error (bool, optional): raise exceptions on connection and server response errors, defaults to True. callback (function, optional): instead of returning the ProduceResponse, first pass it through this function, defaults to None. Returns: list of ProduceResponses, or callback results if supplied, in the order of input payloads """ encoder = functools.partial( KafkaProtocol.encode_produce_request, acks=acks, timeout=timeout) if acks == 0: decoder = None else: decoder = KafkaProtocol.decode_produce_response resps = self._send_broker_aware_request(payloads, encoder, decoder) return [resp if not callback else callback(resp) for resp in resps if resp is not None and (not fail_on_error or not self._raise_on_response_error(resp))] def send_fetch_request(self, payloads=[], fail_on_error=True, callback=None, max_wait_time=100, min_bytes=4096): """ Encode and send a FetchRequest Payloads are grouped by topic and partition so they can be pipelined to the same brokers. """ encoder = functools.partial(KafkaProtocol.encode_fetch_request, max_wait_time=max_wait_time, min_bytes=min_bytes) resps = self._send_broker_aware_request( payloads, encoder, KafkaProtocol.decode_fetch_response) return [resp if not callback else callback(resp) for resp in resps if not fail_on_error or not self._raise_on_response_error(resp)] def send_offset_request(self, payloads=[], fail_on_error=True, callback=None): resps = self._send_broker_aware_request( payloads, KafkaProtocol.encode_offset_request, KafkaProtocol.decode_offset_response) return [resp if not callback else callback(resp) for resp in resps if not fail_on_error or not self._raise_on_response_error(resp)] def send_offset_commit_request(self, group, payloads=[], fail_on_error=True, callback=None): encoder = functools.partial(KafkaProtocol.encode_offset_commit_request, group=group) decoder = KafkaProtocol.decode_offset_commit_response resps = self._send_broker_aware_request(payloads, encoder, decoder) return [resp if not callback else callback(resp) for resp in resps if not fail_on_error or not self._raise_on_response_error(resp)] def send_offset_fetch_request(self, group, payloads=[], fail_on_error=True, callback=None): encoder = functools.partial(KafkaProtocol.encode_offset_fetch_request, group=group) decoder = KafkaProtocol.decode_offset_fetch_response resps = self._send_broker_aware_request(payloads, encoder, decoder) return [resp if not callback else callback(resp) for resp in resps if not fail_on_error or not self._raise_on_response_error(resp)] def send_offset_fetch_request_kafka(self, group, payloads=[], fail_on_error=True, callback=None): encoder = functools.partial(KafkaProtocol.encode_offset_fetch_request, group=group, from_kafka=True) decoder = KafkaProtocol.decode_offset_fetch_response resps = self._send_consumer_aware_request(group, payloads, encoder, decoder) return [resp if not callback else callback(resp) for resp in resps if not fail_on_error or not self._raise_on_response_error(resp)]