Weisen Pan 4ec0a23e73 Edge Federated Learning for Improved Training Efficiency
Change-Id: Ic4e43992e1674946cb69e0221659b0261259196c
2024-09-18 18:39:43 -07:00

212 lines
9.2 KiB
Python

# -*- coding: utf-8 -*-
# @Author: Weisen Pan
import torch
import torch.nn as nn
# Try to import load_state_dict_from_url from torch.hub.
# If it fails (due to older versions), fall back to load_url from torch.utils.model_zoo.
try:
from torch.hub import load_state_dict_from_url
except ImportError:
from torch.utils.model_zoo import load_url as load_state_dict_from_url
# List of all exportable models
__all__ = ['resnet110_sl', 'wide_resnetsl50_2', 'wide_resnetsl16_8']
def apply_3x3_convolution(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding."""
return nn.Conv2d(
in_planes, # Number of input channels
out_planes, # Number of output channels
kernel_size=3, # Size of the filter
stride=stride, # Stride of the convolution
padding=dilation, # Padding for the convolution
groups=groups, # Group convolution
bias=False, # No bias in convolution
dilation=dilation # Dilation rate for dilated convolutions
)
def apply_1x1_convolution(in_planes, out_planes, stride=1):
"""1x1 convolution."""
return nn.Conv2d(
in_planes, # Number of input channels
out_planes, # Number of output channels
kernel_size=1, # Filter size is 1x1
stride=stride, # Stride of the convolution
bias=False # No bias in convolution
)
class BasicBlock(nn.Module):
"""Basic block for ResNet."""
expansion = 1 # No expansion in BasicBlock
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
self.conv1 = apply_3x3_convolution(inplanes, planes, stride) # First 3x3 convolution
self.bn1 = norm_layer(planes) # First batch normalization
self.relu = nn.ReLU(inplace=True) # ReLU activation
self.conv2 = apply_3x3_convolution(planes, planes) # Second 3x3 convolution
self.bn2 = norm_layer(planes) # Second batch normalization
self.downsample = downsample # If there's downsampling (e.g., stride mismatch)
def forward(self, x):
identity = x # Preserve the input as identity for skip connection
out = self.conv1(x) # Apply the first convolution
out = self.bn1(out) # Apply first batch normalization
out = self.relu(out) # Apply ReLU activation
out = self.conv2(out) # Apply the second convolution
out = self.bn2(out) # Apply second batch normalization
# If downsample exists, apply it to the identity
if self.downsample is not None:
identity = self.downsample(x)
out += identity # Add skip connection
out = self.relu(out) # Final ReLU activation
return out # Return the result
class Bottleneck(nn.Module):
"""Bottleneck block for ResNet."""
expansion = 4 # Bottleneck expands the channels by a factor of 4
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups # Width of the block
# 1x1 convolution (bottleneck)
self.conv1 = apply_1x1_convolution(inplanes, width)
self.bn1 = norm_layer(width) # Batch normalization after 1x1 convolution
# 3x3 convolution (main block)
self.conv2 = apply_3x3_convolution(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width) # Batch normalization after 3x3 convolution
# 1x1 convolution (bottleneck exit)
self.conv3 = apply_1x1_convolution(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion) # Batch normalization after 1x1 exit
self.relu = nn.ReLU(inplace=True) # ReLU activation
self.downsample = downsample # Downsampling for skip connection, if needed
def forward(self, x):
identity = x # Store input as identity for the skip connection
out = self.conv1(x) # Apply first 1x1 convolution
out = self.bn1(out) # Apply batch normalization
out = self.relu(out) # Apply ReLU
out = self.conv2(out) # Apply 3x3 convolution
out = self.bn2(out) # Apply batch normalization
out = self.relu(out) # Apply ReLU
out = self.conv3(out) # Apply 1x1 convolution
out = self.bn3(out) # Apply batch normalization
# If downsample exists, apply it to the identity
if self.downsample is not None:
identity = self.downsample(x)
out += identity # Add skip connection
out = self.relu(out) # Final ReLU activation
return out # Return the result
class PrimaryResNetClient(nn.Module):
"""Main ResNet model for client."""
def __init__(self, arch, block, layers, num_classes=1000, zero_init_residual=True,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None, dataset='cifar10', split_factor=1, output_stride=8, dropout_p=None):
super(PrimaryResNetClient, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # Global average pooling before fully connected layer
# Dictionary to store input channel size based on dataset and split factor
inplanes_dict = {
'cifar10': {1: 16, 2: 12, 4: 8, 8: 6, 16: 4, 32: 3},
'cifar100': {1: 16, 2: 12, 4: 8, 8: 6, 16: 4},
'skin_dataset': {1: 64, 2: 44, 4: 32, 8: 24},
'pill_base': {1: 64, 2: 44, 4: 32, 8: 24},
'medical_images': {1: 64, 2: 44, 4: 32, 8: 24},
}
self.inplanes = inplanes_dict[dataset][split_factor] # Set initial input channels
self.fc = nn.Linear(self.inplanes * 4 * block.expansion, num_classes) # Fully connected layer for classification
# Initialize all layers
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm, nn.SyncBatchNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=1e-3)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
# Optionally initialize the last batch normalization layer to zero
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _create_model_layer(self, block, planes, blocks, stride=1, dilate=False):
"""Create a residual layer consisting of several blocks."""
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
apply_1x1_convolution(self.inplanes, planes * block.expansion, stride), # Adjust input size for downsampling
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer)) # Add the first block with downsample
self.inplanes = planes * block.expansion # Update inplanes for the next block
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer)) # Add the remaining blocks
return nn.Sequential(*layers) # Return the stacked blocks
def _forward_impl(self, x):
"""Implementation of the forward pass."""
x = self.layer0(x) # Initial layer
extracted_features = x # Save features after the initial layer
x = self.layer1(x) # First layer
x = self.avgpool(x) # Global average pooling
x = torch.flatten(x, 1) # Flatten the features into a 1D tensor
logits = self.fc(x) # Pass through the fully connected layer
return logits, extracted_features # Return logits and extracted features
def forward(self, x):
"""Standard forward method."""
return self._forward_impl(x)