Weisen Pan 4ec0a23e73 Edge Federated Learning for Improved Training Efficiency
Change-Id: Ic4e43992e1674946cb69e0221659b0261259196c
2024-09-18 18:39:43 -07:00

232 lines
9.6 KiB
Python

# -*- coding: utf-8 -*-
# @Author: Weisen Pan
import torch
import torch.nn as nn
__all__ = ['ResNet']
# Function to define a 3x3 convolution layer with padding
def apply_3x3_convolution(in_channels, out_channels, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
# Function to define a 1x1 convolution layer
def apply_1x1_convolution(in_channels, out_channels, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False)
# BasicBlock class for ResNet architecture
class BasicBlock(nn.Module):
expansion = 1 # Expansion factor
def __init__(self, in_channels, out_channels, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d # Default normalization layer is BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# First convolution and batch normalization layer
self.conv1 = apply_3x3_convolution(in_channels, out_channels, stride)
self.bn1 = norm_layer(out_channels)
self.relu = nn.ReLU(inplace=True) # ReLU activation
# Second convolution and batch normalization layer
self.conv2 = apply_3x3_convolution(out_channels, out_channels)
self.bn2 = norm_layer(out_channels)
self.downsample = downsample # If downsample is provided, use it
def forward(self, x):
identity = x # Keep original input as identity for residual connection
# Forward pass through first convolution, batch norm, and ReLU
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
# Forward pass through second convolution and batch norm
out = self.conv2(out)
out = self.bn2(out)
# Downsample the identity if downsample is provided
if self.downsample is not None:
identity = self.downsample(x)
# Add residual connection (identity)
out += identity
out = self.relu(out) # Apply ReLU activation after addition
return out
# Bottleneck class for deeper ResNet architectures
class Bottleneck(nn.Module):
expansion = 4 # Expansion factor
def __init__(self, in_channels, out_channels, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d # Default normalization layer is BatchNorm2d
width = int(out_channels * (base_width / 64.)) * groups # Calculate width based on group size
# First 1x1 convolution
self.conv1 = apply_1x1_convolution(in_channels, width)
self.bn1 = norm_layer(width)
# Second 3x3 convolution
self.conv2 = apply_3x3_convolution(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
# Third 1x1 convolution to match output channels
self.conv3 = apply_1x1_convolution(width, out_channels * self.expansion)
self.bn3 = norm_layer(out_channels * self.expansion)
self.relu = nn.ReLU(inplace=True) # ReLU activation
self.downsample = downsample # Downsample if provided
def forward(self, x):
identity = x # Keep original input as identity for residual connection
# First 1x1 convolution and ReLU
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
# Second 3x3 convolution and ReLU
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
# Third 1x1 convolution
out = self.conv3(out)
out = self.bn3(out)
# Add downsampled identity if necessary
if self.downsample is not None:
identity = self.downsample(x)
# Add residual connection (identity)
out += identity
out = self.relu(out) # Apply ReLU activation after addition
return out
# ResNet class to build the entire ResNet model
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=10, zero_init_residual=False, groups=1,
width_per_group=64, replace_stride_with_dilation=None, norm_layer=None, KD=False):
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d # Default normalization layer
self._norm_layer = norm_layer
self.inplanes = 16 # Initial number of channels
self.dilation = 1 # Dilation factor
if replace_stride_with_dilation is None:
replace_stride_with_dilation = [False, False, False] # Default stride behavior
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups # Number of groups for convolutions
self.base_width = width_per_group # Base width for groups
# Initial convolutional layer with 3 input channels (RGB image)
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(self.inplanes) # Batch normalization
self.relu = nn.ReLU(inplace=True) # ReLU activation
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # Max pooling layer
self.layer1 = self._create_model_layer(block, 16, layers[0]) # First block layer
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # Adaptive average pooling
self.fc = nn.Linear(16 * block.expansion, num_classes) # Fully connected layer
self.KD = KD # Knowledge Distillation flag
for m in self.modules():
# Initialize convolutional weights using He initialization
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
# Initialize batch normalization weights
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last batch norm layer if zero_init_residual is True
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
# Helper function to create layers of blocks
def _create_model_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
apply_1x1_convolution(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer))
return nn.Sequential(*layers)
# Forward pass of the ResNet model
def forward(self, x):
x = self.conv1(x) # Initial convolution
x = self.bn1(x) # Batch normalization
x = self.relu(x) # ReLU activation
extracted_features = x # Feature extraction point
x = self.layer1(x) # Pass through the first layer
x = self.avgpool(x) # Adaptive average pooling
x_f = x.view(x.size(0), -1) # Flatten the features
logits = self.fc(x_f) # Fully connected layer for classification
return logits, extracted_features # Return logits and extracted features
# Function to create ResNet-5 model
def resnet5_56(num_classes, models_pretrained=False, path=None, **kwargs):
"""Constructs a ResNet-5 model."""
model = ResNet(BasicBlock, [1, 2, 2], num_classes=num_classes, **kwargs)
if models_pretrained:
checkpoint = torch.load(path)
state_dict = checkpoint['state_dict']
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k.replace("module.", "")
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
return model
# Function to create ResNet-8 model
def resnet8_56(num_classes, models_pretrained=False, path=None, **kwargs):
"""Constructs a ResNet-8 model."""
model = ResNet(Bottleneck, [2, 2, 2], num_classes=num_classes, **kwargs)
if models_pretrained:
checkpoint = torch.load(path)
state_dict = checkpoint['state_dict']
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k.replace("module.", "")
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
return model