Weisen Pan 4ec0a23e73 Edge Federated Learning for Improved Training Efficiency
Change-Id: Ic4e43992e1674946cb69e0221659b0261259196c
2024-09-18 18:39:43 -07:00

197 lines
7.5 KiB
Python

# -*- coding: utf-8 -*-
# @Author: Weisen Pan
import logging
import torch
import torch.nn as nn
__all__ = ['ResNet', 'resnet110']
def apply_3x3_convolution(in_channels, out_channels, stride=1, groups=1, dilation=1):
"""3x3 Convolution with padding."""
return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def apply_1x1_convolution(in_channels, out_channels, stride=1):
"""1x1 Convolution."""
return nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
"""Basic Block used in ResNet. Consists of two 3x3 convolutions."""
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
self.conv1 = apply_3x3_convolution(in_channels, out_channels, stride)
self.bn1 = norm_layer(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = apply_3x3_convolution(out_channels, out_channels)
self.bn2 = norm_layer(out_channels)
self.downsample = downsample
self.stride = stride
def forward(self, x):
"""Defines the forward pass through the block."""
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_channels, out_channels, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
"""Bottleneck block used in ResNet. Has three layers: 1x1, 3x3, and 1x1 convolutions."""
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(out_channels * (base_width / 64.)) * groups
self.conv1 = apply_1x1_convolution(in_channels, width)
self.bn1 = norm_layer(width)
self.conv2 = apply_3x3_convolution(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = apply_1x1_convolution(width, out_channels * self.expansion)
self.bn3 = norm_layer(out_channels * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
"""Defines the forward pass through the bottleneck block."""
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=10, zero_init_residual=False, groups=1,
width_per_group=64, replace_stride_with_dilation=None, norm_layer=None, KD=False):
"""Defines the ResNet architecture."""
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 16
self.dilation = 1
if replace_stride_with_dilation is None:
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None or a 3-element tuple.")
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._create_model_layer(block, 16, layers[0])
self.layer2 = self._create_model_layer(block, 32, layers[1], stride=2)
self.layer3 = self._create_model_layer(block, 64, layers[2], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(64 * block.expansion, num_classes)
self.KD = KD
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _create_model_layer(self, block, planes, blocks, stride=1, dilate=False):
"""Creates a layer in ResNet using the specified block type."""
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
apply_1x1_convolution(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer))
return nn.Sequential(*layers)
def forward(self, x):
"""Defines the forward pass of the ResNet model."""
x = self.layer1(x) # Output: B x 16 x 32 x 32
x = self.layer2(x) # Output: B x 32 x 16 x 16
x = self.layer3(x) # Output: B x 64 x 8 x 8
x = self.avgpool(x) # Output: B x 64 x 1 x 1
x_f = x.view(x.size(0), -1) # Flatten: B x 64
x = self.fc(x_f) # Output: B x num_classes
return x
def resnet56_server(num_classes, models_pretrained=False, path=None, **kwargs):
"""
Constructs a ResNet-110 model.
Args:
num_classes (int): Number of output classes.
models_pretrained (bool): If True, returns a model pre-trained on ImageNet.
path (str): Path to the pre-trained model.
"""
logging.info("Loading model with path: " + str(path))
model = ResNet(Bottleneck, [6, 6, 6], num_classes=num_classes, **kwargs)
if models_pretrained:
checkpoint = torch.load(path)
state_dict = checkpoint['state_dict']
new_state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
model.load_state_dict(new_state_dict)
return model