# -*- coding: utf-8 -*- # @Author: Weisen Pan # Load environment modules and required dependencies source /etc/profile.d/modules.sh module load gcc/11.2.0 # Load GCC compiler version 11.2.0 module load openmpi/4.1.3 # Load OpenMPI version 4.1.3 for distributed computing module load cuda/11.5/11.5.2 # Load CUDA version 11.5.2 for GPU acceleration module load cudnn/8.3/8.3.3 # Load cuDNN version 8.3.3 for deep learning libraries module load nccl/2.11/2.11.4-1 # Load NCCL version 2.11.4 for multi-GPU communication module load python/3.10/3.10.4 # Load Python version 3.10.4 # Activate the virtual Python environment source ~/venv/pytorch1.11+horovod/bin/activate # Activate the virtual environment with PyTorch 1.11 and Horovod # Define the log directory, clean up old records if any, and recreate the directory LOG_PATH="/home/projadmin/Federated_Learning/project_EdgeFLite/records/${JOB_NAME}_${JOB_ID}" rm -rf ${LOG_PATH} # Remove the existing log directory if it exists mkdir -p ${LOG_PATH} # Create the log directory # Set up the local data directory and copy the dataset into it DATA_STORAGE="${SGE_LOCALDIR}/${JOB_ID}/" cp -r ../summit2024/simpleFL/performance_test/cifar100/data ${DATA_STORAGE} # Copy CIFAR-100 dataset into the local storage directory # Navigate to the working directory where training scripts are located cd EdgeFLite # Change directory to the project EdgeFLite # Execute the training script with federated learning parameters python run_gkt.py \ --is_fed=1 # Enable federated learning mode --fixed_cluster=0 # Allow dynamic cluster selection --split_factor=1 # Set the split factor for cluster selection --num_clusters=20 # Specify the number of clusters for federated learning --num_selected=20 # Specify the number of selected clusters for each round --arch="wide_resnet16_8" # Use the Wide ResNet16_8 architecture --dataset="cifar10" # Specify the dataset as CIFAR-10 --num_classes=10 # Set the number of classes for classification --is_single_branch=0 # Use multiple branches (not single branch) --is_amp=0 # Disable automatic mixed precision (AMP) --num_rounds=300 # Specify the number of federated learning rounds --fed_epochs=1 # Set the number of epochs per round for federated learning --cifar10_non_iid="quantity_skew" # Use non-iid data distribution with quantity skew for CIFAR-10 --spid="FGKT_W168_20c_skew" # Set the specific process ID for tracking --data=${DATA_STORAGE} # Specify the local data storage path