# -*- coding: utf-8 -*- # @Author: Weisen Pan # Load necessary modules # This section loads essential modules required for the execution environment source /etc/profile.d/modules.sh # Load the module environment configuration module load gcc/11.2.0 # Load GCC (GNU Compiler Collection) version 11.2.0 module load openmpi/4.1.3 # Load OpenMPI version 4.1.3 for parallel computing module load cuda/11.5/11.5.2 # Load CUDA version 11.5.2 for GPU computing module load cudnn/8.3/8.3.3 # Load cuDNN version 8.3.3 for deep learning libraries module load nccl/2.11/2.11.4-1 # Load NCCL version 2.11 for multi-GPU communication module load python/3.10/3.10.4 # Load Python version 3.10.4 for executing Python scripts # Activate virtual environment # This activates the virtual environment that contains the required Python packages source ~/venv/pytorch1.11+horovod/bin/activate # Configure log directory # Sets up the directory for storing logs related to the job execution LOG_PATH="/home/projadmin/Federated_Learning/project_EdgeFLite/records/${JOB_NAME}_${JOB_ID}" mkdir -p ${LOG_PATH} # Create the log directory if it doesn't exist # Prepare dataset directory # This section prepares the dataset directory by copying data to the local directory for the job TEMP_DATA_PATH="${SGE_LOCALDIR}/${JOB_ID}/" # Define the temporary data path for the current job cp -r ../summit2024/simpleFL/performance_test/cifar100/data ${TEMP_DATA_PATH} # Copy the dataset to the temporary path # Change to project directory # Navigates to the project directory where the training script is located cd EdgeFLite # Execute training script # This runs the training script with the specified configuration python train_EdgeFLite.py \ --is_fed=1 \ # Enable federated learning mode --fixed_cluster=0 \ # Do not use a fixed cluster configuration --split_factor=4 \ # Specify the data split factor for federated learning --num_clusters=25 \ # Set the number of clusters to 25 --num_selected=25 \ # Select all 25 clusters for training --arch="resnet_model_110sl" \ # Use the 'resnet_model_110sl' architecture for the model --dataset="cifar100" \ # Set the dataset to CIFAR-100 --num_classes=100 \ # Specify the number of output classes (100 for CIFAR-100) --is_single_branch=0 \ # Enable multi-branch mode for model training --is_amp=0 \ # Disable automatic mixed precision (AMP) for this run --num_rounds=650 \ # Set the total number of federated rounds to 650 --fed_epochs=1 \ # Set the number of local epochs per round to 1 --spid="EdgeFLite_R110_100c_650r" \ # Set the session/process ID for the current job --data=${TEMP_DATA_PATH} # Specify the dataset location (temporary directory)